Skip to contents

ASCA methods

asca()
Analysis of Variance Simultaneous Component Analysis - ASCA
print(<hdanova>) summary(<hdanova>) print(<summary.hdanova>) loadings(<asca>) scores(<asca>) projections()
ASCA Result Methods
loadingplot(<asca>) scoreplot(<asca>) permutationplot()
ASCA Plot Methods
biplot(<asca>)
Biplot for ASCA models
apca()
ANOVA Principal Component Analysis - APCA
apls()
Analysis of Variance Partial Least Squares - APLS
hdanova()
High-Dimensional Analysis of Variance
msca()
Multilevel Simultaneous Component Analysis - MSCA
limmpca()
Linear Mixed Model PCA
permutation()
Permutation for HDANOVA
pls()
Partial Least Squares (PLS) for HDANOVA
sca()
Simultaneous Component Analysis

Additional methods

pcanova()
Principal Components Analysis of Variance Simultaneous Component Analysis - PC-ANOVA
summary(<pcanova>) print(<summary.pcanova>) print(<pcanova>)
PC-ANOVA Result Methods
scoreplot(<pcanova>)
PC-ANOVA Result Methods
prc()
Principal Response Curves
permanova()
Permutation Based MANOVA - PERMANOVA

Utility functions

block.data.frame()
Block-wise indexable data.frame
dummycode()
Dummy-coding of a single vector
extended.model.frame()
Extracting the Extended Model Frame from a Formula or Fit
extract_estimates()
Extract estimates for a given factor combination
model.frame(<asca>) model.matrix(<asca>)
Model Frame and Model Matrix for ASCA-like Models
signflip()
Flip signs of a component/factor combination in a SCA/PCA object
timeplot()
Timeplot for Combined Effects
update_without_factor()
Update a Model without Factor

Datasets

candies
Sensory assessment of candies.
caldana
Arabidopsis thaliana growth experiment