Various plotting procedures for asca objects.
Usage
# S3 method for class 'asca'
loadingplot(object, factor = 1, comps = 1:2, ...)
# S3 method for class 'asca'
scoreplot(
object,
factor = 1,
comps = 1:2,
within_level = "all",
pch.scores = 19,
pch.projections = 1,
gr.col = NULL,
projections = TRUE,
spider = FALSE,
ellipsoids,
confidence,
xlim,
ylim,
xlab,
ylab,
legendpos,
...
)
permutationplot(object, factor = 1, xlim, xlab = "SSQ", main, ...)Arguments
- object
ascaobject.- factor
integer/characterfor selecting a model factor. If factor <= 0 or "global", the PCA of the input is used (negativ factor to include factor level colouring with global PCA).- comps
integervector of selected components.- ...
additional arguments to underlying methods.
- within_level
MSCA parameter for chosing plot level (default = "all").
- pch.scores
integerplotting symbol.- pch.projections
integerplotting symbol.- gr.col
integervector of colours for groups.- projections
Include backprojections in score plot (default = TRUE).
- spider
Draw lines between group centers and backprojections (default = FALSE).
- ellipsoids
character"confidence" or "data" ellipsoids for balanced fixed effect models.- confidence
numericvector of ellipsoid confidences, default = c(0.4, 0.68, 0.95).- xlim
numericx limits.- ylim
numericy limits.- xlab
characterx label.- ylab
charactery label.- legendpos
characterposition of legend.- main
Plot title.
Details
Usage of the functions are shown using generics in the examples in asca.
Plot routines are available as
scoreplot.asca and loadingplot.asca.
References
Smilde, A., Jansen, J., Hoefsloot, H., Lamers,R., Van Der Greef, J., and Timmerman, M.(2005). ANOVA-Simultaneous Component Analysis (ASCA): A new tool for analyzing designed metabolomics data. Bioinformatics, 21(13), 3043–3048.
Liland, K.H., Smilde, A., Marini, F., and Næs,T. (2018). Confidence ellipsoids for ASCA models based on multivariate regression theory. Journal of Chemometrics, 32(e2990), 1–13.
Martin, M. and Govaerts, B. (2020). LiMM-PCA: Combining ASCA+ and linear mixed models to analyse high-dimensional designed data. Journal of Chemometrics, 34(6), e3232.
See also
Main methods: asca, apca, limmpca, msca, pcanova, prc and permanova.
Workhorse function underpinning most methods: hdanova.
Extraction of results and plotting: asca_results, asca_plots, pcanova_results and pcanova_plots