Skip to contents

Model fitting

Functions for fitting PLSR and PCR models.

mvr() plsr() pcr() cppls() nipals() nipalspcr()
Partial Least Squares and Principal Component Regression
mvrValstats() R2() MSEP() RMSEP()
MSEP, RMSEP and R2 of PLSR and PCR models

Model summary

Functions for summarizing fitted models.

print(<mvr>) summary(<mvr>) print(<mvrVal>) as.data.frame(<mvrVal>)
Summary and Print Methods for PLSR and PCR objects
coefplot()
Plot Regression Coefficients of PLSR and PCR models
predplot() predplotXy()
Prediction Plots

Plotting

Functions for plotting fitted models.

plot(<mvr>)
Plot Method for MVR objects
scoreplot() plot(<scores>) loadingplot() plot(<loadings>) corrplot()
Plots of Scores, Loadings and Correlation Loadings
biplot(<mvr>)
Biplots of PLSR and PCR Models.
predplot() predplotXy()
Prediction Plots
validationplot() plot(<mvrVal>)
Validation Plots

Extraction methods

Functions for extracting information from fitted models.

coef(<mvr>) fitted(<mvr>) residuals(<mvr>) model.frame(<mvr>) model.matrix(<mvr>) respnames() prednames() compnames() explvar()
Extract Information From a Fitted PLSR or PCR Model
loadings() scores() Yscores() loading.weights() Yloadings()
Extract Scores and Loadings from PLSR and PCR Models
predict(<mvr>)
Predict Method for PLSR and PCR
vcov(<mvr>)
Calculate Variance-Covariance Matrix for a Fitted Model Object
selectNcomp()
Suggestions for the optimal number of components in PCR and PLSR models
pls.options()
Set or return options for the pls package

Validation

Functions for validating fitted models.

crossval()
Cross-validation of PLSR and PCR models
mvrCv()
Cross-validation
cvsegments()
Generate segments for cross-validation
fac2seg()
Factor to Segments
mvrValstats() R2() MSEP() RMSEP()
MSEP, RMSEP and R2 of PLSR and PCR models

Tests

Functions for testing fitted models.

jack.test() print(<jacktest>)
Jackknife approximate t tests of regression coefficients
var.jack()
Jackknife Variance Estimates of Regression Coefficients

Algorithms

Functions for fitting models using various algorithms.

kernelpls.fit()
Kernel PLS (Dayal and MacGregor)
nipals.fit()
NIPALS PLS with missing values
nipalspc.fit()
NIPALS PCR with missing values
cppls.fit()
CPPLS (Indahl et al.)
oscorespls.fit()
Orthogonal scores PLSR
widekernelpls.fit()
Wide Kernel PLS (Rännar et al.)
simpls.fit()
Sijmen de Jong's SIMPLS
svdpc.fit()
Principal Component Regression
msc() predict(<msc>) makepredictcall(<msc>)
Multiplicative Scatter Correction
stdize() predict(<stdized>) makepredictcall(<stdized>)
Standardization of Data Matrices

Data sets

Data sets included in the package.

gasoline
Octane numbers and NIR spectra of gasoline
yarn
NIR spectra and density measurements of PET yarns
oliveoil
Sensory and physico-chemical data of olive oils
mayonnaise
NIR measurements and oil types of mayonnaise