Package index
-
mvr()plsr()pcr()cppls()nipals()nipalspcr() - Partial Least Squares and Principal Component Regression
-
mvrValstats()R2()MSEP()RMSEP() - MSEP, RMSEP and R2 of PLSR and PCR models
-
print(<mvr>)summary(<mvr>)print(<mvrVal>)as.data.frame(<mvrVal>) - Summary and Print Methods for PLSR and PCR objects
-
coefplot() - Plot Regression Coefficients of PLSR and PCR models
-
predplot()predplotXy() - Prediction Plots
-
plot(<mvr>) - Plot Method for MVR objects
-
scoreplot()plot(<scores>)loadingplot()plot(<loadings>)corrplot() - Plots of Scores, Loadings and Correlation Loadings
-
biplot(<mvr>) - Biplots of PLSR and PCR Models.
-
predplot()predplotXy() - Prediction Plots
-
validationplot()plot(<mvrVal>) - Validation Plots
-
coef(<mvr>)fitted(<mvr>)residuals(<mvr>)model.frame(<mvr>)model.matrix(<mvr>)respnames()prednames()compnames()explvar() - Extract Information From a Fitted PLSR or PCR Model
-
loadings()scores()Yscores()loading.weights()Yloadings() - Extract Scores and Loadings from PLSR and PCR Models
-
predict(<mvr>) - Predict Method for PLSR and PCR
-
vcov(<mvr>) - Calculate Variance-Covariance Matrix for a Fitted Model Object
-
selectNcomp() - Suggestions for the optimal number of components in PCR and PLSR models
-
pls.options() - Set or return options for the pls package
-
crossval() - Cross-validation of PLSR and PCR models
-
mvrCv() - Cross-validation
-
cvsegments() - Generate segments for cross-validation
-
fac2seg() - Factor to Segments
-
mvrValstats()R2()MSEP()RMSEP() - MSEP, RMSEP and R2 of PLSR and PCR models
-
jack.test()print(<jacktest>) - Jackknife approximate t tests of regression coefficients
-
var.jack() - Jackknife Variance Estimates of Regression Coefficients
-
kernelpls.fit() - Kernel PLS (Dayal and MacGregor)
-
nipals.fit() - NIPALS PLS with missing values
-
nipalspc.fit() - NIPALS PCR with missing values
-
cppls.fit() - CPPLS (Indahl et al.)
-
oscorespls.fit() - Orthogonal scores PLSR
-
widekernelpls.fit() - Wide Kernel PLS (Rännar et al.)
-
simpls.fit() - Sijmen de Jong's SIMPLS
-
svdpc.fit() - Principal Component Regression
-
msc()predict(<msc>)makepredictcall(<msc>) - Multiplicative Scatter Correction
-
stdize()predict(<stdized>)makepredictcall(<stdized>) - Standardization of Data Matrices
-
gasoline - Octane numbers and NIR spectra of gasoline
-
yarn - NIR spectra and density measurements of PET yarns
-
oliveoil - Sensory and physico-chemical data of olive oils
-
mayonnaise - NIR measurements and oil types of mayonnaise