Skip to contents

Summary and print methods for mvr and mvrVal objects.

Usage

# S3 method for class 'mvr'
print(x, ...)

# S3 method for class 'mvr'
summary(
  object,
  what = c("all", "validation", "training"),
  digits = 4,
  print.gap = 2,
  ...
)

# S3 method for class 'mvrVal'
print(x, digits = 4, print.gap = 2, ...)

# S3 method for class 'mvrVal'
as.data.frame(x, row.names = NULL, optional = FALSE, shortAlgs = TRUE, ...)

Arguments

x, object

an mvr object

...

Other arguments sent to underlying methods.

what

one of "all", "validation" or "training"

digits

integer. Minimum number of significant digits in the output. Default is 4.

print.gap

Integer. Gap between coloumns of the printed tables.

row.names

NULL or a character vector giving the row names for the data frame. Missing values are not allowed.

optional

Not used, only included to match signature of as.data.frame.

shortAlgs

Logical. Shorten algorithm names (default = TRUE).

Value

print.mvr and print.mvrVal return the object invisibly.

Details

If what is "training", the explained variances are given; if it is "validation", the cross-validated RMSEPs (if available) are given; if it is "all", both are given.

See also

Author

Ron Wehrens and Bjørn-Helge Mevik

Examples


data(yarn)
nir.mvr <- mvr(density ~ NIR, ncomp = 8, validation = "LOO", data = yarn)
nir.mvr
#> Partial least squares regression, fitted with the kernel algorithm.
#> Cross-validated using 28 leave-one-out segments.
#> Call:
#> mvr(formula = density ~ NIR, ncomp = 8, data = yarn, validation = "LOO")
summary(nir.mvr)
#> Data: 	X dimension: 28 268 
#> 	Y dimension: 28 1
#> Fit method: kernelpls
#> Number of components considered: 8
#> 
#> VALIDATION: RMSEP
#> Cross-validated using 28 leave-one-out segments.
#>        (Intercept)  1 comps  2 comps  3 comps  4 comps  5 comps  6 comps
#> CV           27.46    4.600    3.900    2.090   0.7686   0.5004   0.4425
#> adjCV        27.46    4.454    3.973    2.084   0.7570   0.4967   0.4398
#>        7 comps  8 comps
#> CV      0.2966   0.2643
#> adjCV   0.2926   0.2610
#> 
#> TRAINING: % variance explained
#>          1 comps  2 comps  3 comps  4 comps  5 comps  6 comps  7 comps  8 comps
#> X          46.83    98.38    99.46    99.67    99.85    99.97    99.98    99.99
#> density    98.12    98.25    99.64    99.97    99.99    99.99   100.00   100.00
RMSEP(nir.mvr)
#>        (Intercept)  1 comps  2 comps  3 comps  4 comps  5 comps  6 comps
#> CV           27.46    4.600    3.900    2.090   0.7686   0.5004   0.4425
#> adjCV        27.46    4.454    3.973    2.084   0.7570   0.4967   0.4398
#>        7 comps  8 comps
#> CV      0.2966   0.2643
#> adjCV   0.2926   0.2610
# Extract MVR validation statistics as data.frame:
as.data.frame(RMSEP(nir.mvr, estimate = "CV"))
#>   estimate response comps validation method algorithm      value
#> 1       CV  density     0        LOO    mvr    kernel 27.4569014
#> 2       CV  density     1        LOO    mvr    kernel  4.6000678
#> 3       CV  density     2        LOO    mvr    kernel  3.8997929
#> 4       CV  density     3        LOO    mvr    kernel  2.0898916
#> 5       CV  density     4        LOO    mvr    kernel  0.7686120
#> 6       CV  density     5        LOO    mvr    kernel  0.5003516
#> 7       CV  density     6        LOO    mvr    kernel  0.4424918
#> 8       CV  density     7        LOO    mvr    kernel  0.2965848
#> 9       CV  density     8        LOO    mvr    kernel  0.2642607
as.data.frame(R2(nir.mvr))
#>   estimate response comps validation method algorithm       value
#> 1       CV  density     0        LOO    mvr    kernel -0.07544582
#> 2       CV  density     1        LOO    mvr    kernel  0.96981342
#> 3       CV  density     2        LOO    mvr    kernel  0.97830455
#> 4       CV  density     3        LOO    mvr    kernel  0.99376936
#> 5       CV  density     4        LOO    mvr    kernel  0.99915725
#> 6       CV  density     5        LOO    mvr    kernel  0.99964286
#> 7       CV  density     6        LOO    mvr    kernel  0.99972068
#> 8       CV  density     7        LOO    mvr    kernel  0.99987452
#> 9       CV  density     8        LOO    mvr    kernel  0.99990038