Måge plot for SO-PLS (sopls) cross-validation visualisation.
Usage
maage(
object,
expl_var = TRUE,
pure.trace = FALSE,
pch = 20,
xlab = "# components",
ylab = ifelse(expl_var, "Explained variance (%)", "RMSECV"),
xlim = NULL,
ylim = NULL,
cex.text = 0.8,
...
)
maageSeq(
object,
compSeq = TRUE,
expl_var = TRUE,
pch = 20,
xlab = "# components",
ylab = ifelse(expl_var, "Explained variance (%)", "RMSECV"),
xlim = NULL,
ylim = NULL,
cex.text = 0.8,
col = "gray",
col.block = c("red", "blue", "darkgreen", "purple", "black", "red", "blue",
"darkgreen"),
...
)Arguments
- object
An SO-PLS model (
soplsobject)- expl_var
Logical indicating if explained variance (default) or RMSECV should be displayed.
- pure.trace
Logical indicating if single block solutions should be traced in the plot.
- pch
Scalar or symbol giving plot symbol.
- xlab
Label for x-axis.
- ylab
Label for y-axis.
- xlim
Plot limits for x-axis (numeric vector).
- ylim
Plot limits for y-axis (numeric vector).
- cex.text
Text scaling (scalar) for better readability of plots.
- ...
Additional arguments to
plot.- compSeq
Integer vector giving the sequence of previous components chosen for
maageSeq(see example).- col
Line colour in plot.
- col.block
Line colours for blocks (default = c('red','blue','darkgreen','purple','black'))
Details
This function can either be used
for global optimisation across blocks or sequential optimisation, using maageSeq.
The examples below show typical usage.
See also
Overviews of available methods, multiblock, and methods organised by main structure: basic, unsupervised, asca, supervised and complex.
Examples
data(wine)
ncomp <- unlist(lapply(wine, ncol))[-5]
so.wine <- sopls(`Global quality` ~ ., data=wine, ncomp=ncomp,
max_comps=10, validation="CV", segments=10)
maage(so.wine)
# Sequential search for optimal number of components per block
old.par <- par(mfrow=c(2,2), mar=c(3,3,0.5,1), mgp=c(2,0.7,0))
maageSeq(so.wine)
maageSeq(so.wine, 2)
maageSeq(so.wine, c(2,1))
maageSeq(so.wine, c(2,1,1))
par(old.par)