Måge plot for SO-PLS (sopls
) cross-validation visualisation.
Usage
maage(
object,
expl_var = TRUE,
pure.trace = FALSE,
pch = 20,
xlab = "# components",
ylab = ifelse(expl_var, "Explained variance (%)", "RMSECV"),
xlim = NULL,
ylim = NULL,
cex.text = 0.8,
...
)
maageSeq(
object,
compSeq = TRUE,
expl_var = TRUE,
pch = 20,
xlab = "# components",
ylab = ifelse(expl_var, "Explained variance (%)", "RMSECV"),
xlim = NULL,
ylim = NULL,
cex.text = 0.8,
col = "gray",
col.block = c("red", "blue", "darkgreen", "purple", "black", "red", "blue",
"darkgreen"),
...
)
Arguments
- object
An SO-PLS model (
sopls
object)- expl_var
Logical indicating if explained variance (default) or RMSECV should be displayed.
- pure.trace
Logical indicating if single block solutions should be traced in the plot.
- pch
Scalar or symbol giving plot symbol.
- xlab
Label for x-axis.
- ylab
Label for y-axis.
- xlim
Plot limits for x-axis (numeric vector).
- ylim
Plot limits for y-axis (numeric vector).
- cex.text
Text scaling (scalar) for better readability of plots.
- ...
Additional arguments to
plot
.- compSeq
Integer vector giving the sequence of previous components chosen for
maageSeq
(see example).- col
Line colour in plot.
- col.block
Line colours for blocks (default = c('red','blue','darkgreen','purple','black'))
Details
This function can either be used
for global optimisation across blocks or sequential optimisation, using maageSeq
.
The examples below show typical usage.
See also
Overviews of available methods, multiblock
, and methods organised by main structure: basic
, unsupervised
, asca
, supervised
and complex
.
Examples
data(wine)
ncomp <- unlist(lapply(wine, ncol))[-5]
so.wine <- sopls(`Global quality` ~ ., data=wine, ncomp=ncomp,
max_comps=10, validation="CV", segments=10)
maage(so.wine)
# Sequential search for optimal number of components per block
old.par <- par(mfrow=c(2,2), mar=c(3,3,0.5,1), mgp=c(2,0.7,0))
maageSeq(so.wine)
maageSeq(so.wine, 2)
maageSeq(so.wine, c(2,1))
maageSeq(so.wine, c(2,1,1))
par(old.par)