Various plotting procedures for asca
objects.
Usage
# S3 method for class 'asca'
loadingplot(object, factor = 1, comps = 1:2, ...)
# S3 method for class 'asca'
scoreplot(
object,
factor = 1,
comps = 1:2,
pch.scores = 19,
pch.projections = 1,
gr.col = 1:nlevels(object$effects[[factor]]),
ellipsoids,
confidence,
xlim,
ylim,
xlab,
ylab,
legendpos,
...
)
Arguments
- object
asca
object.- factor
integer/character
for selecting a model factor.- comps
integer
vector of selected components.- ...
additional arguments to underlying methods.
- pch.scores
integer
plotting symbol.- pch.projections
integer
plotting symbol.- gr.col
integer
vector of colours for groups.- ellipsoids
character
"confidence" or "data" ellipsoids for balanced fixed effect models.- confidence
numeric
vector of ellipsoid confidences, default = c(0.4, 0.68, 0.95).- xlim
numeric
x limits.- ylim
numeric
y limits.- xlab
character
x label.- ylab
character
y label.- legendpos
character
position of legend.
Details
Usage of the functions are shown using generics in the examples in asca
.
Plot routines are available as
scoreplot.asca
and loadingplot.asca
.
References
Smilde, A., Jansen, J., Hoefsloot, H., Lamers,R., Van Der Greef, J., and Timmerman, M.(2005). ANOVA-Simultaneous Component Analysis (ASCA): A new tool for analyzing designed metabolomics data. Bioinformatics, 21(13), 3043–3048.
Liland, K.H., Smilde, A., Marini, F., and Næs,T. (2018). Confidence ellipsoids for ASCA models based on multivariate regression theory. Journal of Chemometrics, 32(e2990), 1–13.
Martin, M. and Govaerts, B. (2020). LiMM-PCA: Combining ASCA+ and linear mixed models to analyse high-dimensional designed data. Journal of Chemometrics, 34(6), e3232.
See also
Overviews of available methods, multiblock
, and methods organised by main structure: basic
, unsupervised
, asca
, supervised
and complex
.
Common functions for computation and extraction of results are found in asca_results
.