Various plotting procedures for asca objects.
Usage
# S3 method for class 'asca'
loadingplot(object, factor = 1, comps = 1:2, ...)
# S3 method for class 'asca'
scoreplot(
object,
factor = 1,
comps = 1:2,
pch.scores = 19,
pch.projections = 1,
gr.col = 1:nlevels(object$effects[[factor]]),
ellipsoids,
confidence,
xlim,
ylim,
xlab,
ylab,
legendpos,
...
)Arguments
- object
ascaobject.- factor
integer/characterfor selecting a model factor.- comps
integervector of selected components.- ...
additional arguments to underlying methods.
- pch.scores
integerplotting symbol.- pch.projections
integerplotting symbol.- gr.col
integervector of colours for groups.- ellipsoids
character"confidence" or "data" ellipsoids for balanced fixed effect models.- confidence
numericvector of ellipsoid confidences, default = c(0.4, 0.68, 0.95).- xlim
numericx limits.- ylim
numericy limits.- xlab
characterx label.- ylab
charactery label.- legendpos
characterposition of legend.
Details
Usage of the functions are shown using generics in the examples in asca.
Plot routines are available as
scoreplot.asca and loadingplot.asca.
References
Smilde, A., Jansen, J., Hoefsloot, H., Lamers,R., Van Der Greef, J., and Timmerman, M.(2005). ANOVA-Simultaneous Component Analysis (ASCA): A new tool for analyzing designed metabolomics data. Bioinformatics, 21(13), 3043–3048.
Liland, K.H., Smilde, A., Marini, F., and Næs,T. (2018). Confidence ellipsoids for ASCA models based on multivariate regression theory. Journal of Chemometrics, 32(e2990), 1–13.
Martin, M. and Govaerts, B. (2020). LiMM-PCA: Combining ASCA+ and linear mixed models to analyse high-dimensional designed data. Journal of Chemometrics, 34(6), e3232.
See also
Overviews of available methods, multiblock, and methods organised by main structure: basic, unsupervised, asca, supervised and complex.
Common functions for computation and extraction of results are found in asca_results.