Various plotting procedures for asca objects.
Usage
# S3 method for class 'asca'
loadingplot(object, factor = 1, comps = 1:2, ...)
# S3 method for class 'asca'
scoreplot(
  object,
  factor = 1,
  comps = 1:2,
  pch.scores = 19,
  pch.projections = 1,
  gr.col = 1:nlevels(object$effects[[factor]]),
  ellipsoids,
  confidence,
  xlim,
  ylim,
  xlab,
  ylab,
  legendpos,
  ...
)Arguments
- object
 ascaobject.- factor
 integer/characterfor selecting a model factor.- comps
 integervector of selected components.- ...
 additional arguments to underlying methods.
- pch.scores
 integerplotting symbol.- pch.projections
 integerplotting symbol.- gr.col
 integervector of colours for groups.- ellipsoids
 character"confidence" or "data" ellipsoids for balanced fixed effect models.- confidence
 numericvector of ellipsoid confidences, default = c(0.4, 0.68, 0.95).- xlim
 numericx limits.- ylim
 numericy limits.- xlab
 characterx label.- ylab
 charactery label.- legendpos
 characterposition of legend.
Details
Usage of the functions are shown using generics in the examples in asca.
Plot routines are available as
scoreplot.asca and loadingplot.asca.
References
Smilde, A., Jansen, J., Hoefsloot, H., Lamers,R., Van Der Greef, J., and Timmerman, M.(2005). ANOVA-Simultaneous Component Analysis (ASCA): A new tool for analyzing designed metabolomics data. Bioinformatics, 21(13), 3043–3048.
Liland, K.H., Smilde, A., Marini, F., and Næs,T. (2018). Confidence ellipsoids for ASCA models based on multivariate regression theory. Journal of Chemometrics, 32(e2990), 1–13.
Martin, M. and Govaerts, B. (2020). LiMM-PCA: Combining ASCA+ and linear mixed models to analyse high-dimensional designed data. Journal of Chemometrics, 34(6), e3232.
See also
Overviews of available methods, multiblock, and methods organised by main structure: basic, unsupervised, asca, supervised and complex.
Common functions for computation and extraction of results are found in asca_results.